Exploring wear at the nanoscale with circular mode atomic force microscopy

نویسندگان

  • Olivier Noel
  • Aleksandar Vencl
  • Pierre-Emmanuel Mazeran
چکیده

The development of atomic force microscopy (AFM) has allowed wear mechanisms to be investigated at the nanometer scale by means of a single asperity contact generated by an AFM tip and an interacting surface. However, the low wear rate at the nanoscale and the thermal drift require fastidious quantitative measurements of the wear volume for determining wear laws. In this paper, we describe a new, effective, experimental methodology based on circular mode AFM, which generates high frequency, circular displacements of the contact. Under such conditions, the wear rate is significant and the drift of the piezoelectric actuator is limited. As a result, well-defined wear tracks are generated and an accurate computation of the wear volume is possible. Finally, we describe the advantages of this method and we report a relevant application example addressing a Cu/Al2O3 nanocomposite material used in industrial applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Method for characterizing nanoscale wear of atomic force microscope tips.

Atomic force microscopy (AFM) is a powerful tool for studying tribology (adhesion, friction, and lubrication) at the nanoscale and is emerging as a critical tool for nanomanufacturing. However, nanoscale wear is a key limitation of conventional AFM probes that are made of silicon and silicon nitride (SiNx). Here we present a method for systematically quantifying tip wear, which consists of sequ...

متن کامل

Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes.

Nanoscale wear is a key limitation of conventional atomic force microscopy (AFM) probes that results in decreased resolution, accuracy, and reproducibility in probe-based imaging, writing, measurement, and nanomanufacturing applications. Diamond is potentially an ideal probe material due to its unrivaled hardness and stiffness, its low friction and wear, and its chemical inertness. However, the...

متن کامل

Nanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography

Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...

متن کامل

Assessment of the mechanical integrity of silicon and diamond-like carbon coated silicon atomic force microscope probes

The wear of atomic force microscope (AFM) tips is a critical issue in the performance of probe-based metrology and nanomanufacturing processes. In this work, diamond-like carbon (DLC) was coated on Si AFM tips using a plasma ion implantation and deposition process. The mechanical integrity of these DLC-coated tips was compared to that of uncoated silicon tips through systematic nanoscale wear t...

متن کامل

Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon.

Understanding friction and wear at the nanoscale is important for many applications that involve nanoscale components sliding on a surface, such as nanolithography, nanometrology and nanomanufacturing. Defects, cracks and other phenomena that influence material strength and wear at macroscopic scales are less important at the nanoscale, which is why nanowires can, for example, show higher stren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017